
Topics in Optimization
(Entropy-Maximization and Variational Methods)

(22-672 – Spring 2021)

Instructor: Amir Daneshgar
daneshgar@sharif.ir

Assistant: MohammadHoessin Shojaeddin

Level: Last year Undergraduate/Graduate

Prerequisites: Linear Algebra, Probability Theory, Basic Programming.

Course description: The main objective of this course is to introduce the general paradigm
of algorithm design which is related to entropy-based variational method. This approach
which has been introduced and considerably developed within the past 20 years, has its
roots in statistical mechanics [6, 7], while its recent applications in statistical inference
within the context of graphical models has turned it into a very powerful tool to be used in
a variety of statistical, computational and mathematical fields with applications in machine
learning and artificial intelligence, bioinformatics, communication theory, combinatorial op-
timization, signal and image processing, mathematical finance and analysis of many other
complex systems (e.g. see [1, 6, 9, 10]).

The strong point of this dual-optimization approach lies in applicability of a culmination
of ideas borrowed from physics, Bayesian inference and convex optimization, where as an
inference method, this approach can essentially be characterized as an alternative to the
MCMC or other algorithmic paradigms which are based on sampling techniques.

The main objective of the course is to present the basic theoretical facts, ideas and tech-
niques needed to design such algorithms with an emphasis on implementations. A schedule
of the course topics are as follows:

• A probabilistic toolbox, concentration of measure and isoperimetry [2, 4, 6].

• Basics of information theory and statistical physics [2, 5, 6].

• Foundations of the variational method [2, 3, 9].

• Introduction to cavity method and belief propagation [5, 6, 10].

• Mean-field approximations [8, 9].

• Linear approximation of the cavity method, nonbacktracking matrix and
the stochastic block model [6, 10].

• Foundations of graphical models [8, 9].

• Projects.

Evaluation: will be based on the student’s performance in doing the exercises, final and
take-home exams along with an implementation project.
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